3.12.57 \(\int \frac {\sqrt {\cos (c+d x)} (A+C \sec ^2(c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx\) [1157]

3.12.57.1 Optimal result
3.12.57.2 Mathematica [A] (verified)
3.12.57.3 Rubi [A] (verified)
3.12.57.4 Maple [A] (verified)
3.12.57.5 Fricas [A] (verification not implemented)
3.12.57.6 Sympy [F]
3.12.57.7 Maxima [B] (verification not implemented)
3.12.57.8 Giac [F]
3.12.57.9 Mupad [F(-1)]

3.12.57.1 Optimal result

Integrand size = 37, antiderivative size = 175 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {2 C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}-\frac {\sqrt {2} (A+C) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \]

output
2*C*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*se 
c(d*x+c)^(1/2)/d/a^(1/2)-(A+C)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^( 
1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*2^(1/2)*cos(d*x+c)^(1/2)*sec(d*x+c)^( 
1/2)/d/a^(1/2)+2*A*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)
 
3.12.57.2 Mathematica [A] (verified)

Time = 1.41 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.73 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\left (2 A \sqrt {1-\sec (c+d x)}-2 C \arcsin \left (\sqrt {\sec (c+d x)}\right ) \sqrt {\sec (c+d x)}+\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sqrt {\sec (c+d x)}\right ) \sin (c+d x)}{d \sqrt {-1+\cos (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[(Sqrt[Cos[c + d*x]]*(A + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d 
*x]],x]
 
output
((2*A*Sqrt[1 - Sec[c + d*x]] - 2*C*ArcSin[Sqrt[Sec[c + d*x]]]*Sqrt[Sec[c + 
 d*x]] + Sqrt[2]*(A + C)*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[ 
c + d*x]]]*Sqrt[Sec[c + d*x]])*Sin[c + d*x])/(d*Sqrt[-1 + Cos[c + d*x]]*Sq 
rt[a*(1 + Sec[c + d*x])])
 
3.12.57.3 Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.92, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.324, Rules used = {3042, 4753, 3042, 4575, 27, 3042, 4511, 3042, 4288, 222, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec (c+d x)^2\right )}{\sqrt {a \sec (c+d x)+a}}dx\)

\(\Big \downarrow \) 4753

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \sec ^2(c+d x)+A}{\sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx\)

\(\Big \downarrow \) 4575

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \int -\frac {\sqrt {\sec (c+d x)} (a A-a C \sec (c+d x))}{2 \sqrt {\sec (c+d x) a+a}}dx}{a}+\frac {2 A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {\sqrt {\sec (c+d x)} (a A-a C \sec (c+d x))}{\sqrt {\sec (c+d x) a+a}}dx}{a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a A-a C \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}\right )\)

\(\Big \downarrow \) 4511

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {a (A+C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx-C \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx}{a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {a (A+C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-C \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{a}\right )\)

\(\Big \downarrow \) 4288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {a (A+C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {2 C \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{a}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {a (A+C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {2 \sqrt {a} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}\right )\)

\(\Big \downarrow \) 4295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {-\frac {2 a (A+C) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}-\frac {2 \sqrt {a} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {\frac {\sqrt {2} \sqrt {a} (A+C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {2 \sqrt {a} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}\right )\)

input
Int[(Sqrt[Cos[c + d*x]]*(A + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x 
]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-(((-2*Sqrt[a]*C*ArcSinh[(Sqrt[a]*T 
an[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (Sqrt[2]*Sqrt[a]*(A + C)*ArcTa 
nh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d 
*x]])])/d)/a) + (2*A*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c 
+ d*x]]))
 

3.12.57.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4511
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(A*b - 
a*B)/b   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Simp[B/b 
 Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b 
, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0]
 

rule 4575
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Co 
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/( 
b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b 
*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, 
 C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || 
 EqQ[m + n + 1, 0])
 

rule 4753
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cos[a 
+ b*x])^m*(c*Sec[a + b*x])^m   Int[ActivateTrig[u]/(c*Sec[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.12.57.4 Maple [A] (verified)

Time = 0.81 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.42

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {\cos \left (d x +c \right )}\, \left (A \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+2 A \sin \left (d x +c \right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}+C \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )-C \arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )-C \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )\right )}{d \left (1+\cos \left (d x +c \right )\right ) a \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\) \(248\)

input
int((A+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x,method=_R 
ETURNVERBOSE)
 
output
1/d*(a*(1+sec(d*x+c)))^(1/2)*cos(d*x+c)^(1/2)*(A*2^(1/2)*arctan(1/2*sin(d* 
x+c)*2^(1/2)/(1+cos(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2))+2*A*sin(d*x+c)*(-1/ 
(1+cos(d*x+c)))^(1/2)+C*2^(1/2)*arctan(1/2*sin(d*x+c)*2^(1/2)/(1+cos(d*x+c 
))/(-1/(1+cos(d*x+c)))^(1/2))-C*arctan(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(1+c 
os(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2))-C*arctan(1/2*(cos(d*x+c)+sin(d*x+c)+ 
1)/(1+cos(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2)))/(1+cos(d*x+c))/a/(-1/(1+cos( 
d*x+c)))^(1/2)
 
3.12.57.5 Fricas [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 489, normalized size of antiderivative = 2.79 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {4 \, A \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (C \cos \left (d x + c\right ) + C\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {\sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} + \frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}}}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, \frac {\sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) + 2 \, A \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (C \cos \left (d x + c\right ) + C\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{a d \cos \left (d x + c\right ) + a d}\right ] \]

input
integrate((A+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, al 
gorithm="fricas")
 
output
[1/2*(4*A*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d 
*x + c) + (C*cos(d*x + c) + C)*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*s 
qrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos(d*x + c 
))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c) 
^2)) + sqrt(2)*((A + C)*a*cos(d*x + c) + (A + C)*a)*log(-(cos(d*x + c)^2 + 
 2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin( 
d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 
1))/sqrt(a))/(a*d*cos(d*x + c) + a*d), (sqrt(2)*((A + C)*a*cos(d*x + c) + 
(A + C)*a)*sqrt(-1/a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c 
))*sqrt(-1/a)*sqrt(cos(d*x + c))/sin(d*x + c)) + 2*A*sqrt((a*cos(d*x + c) 
+ a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + (C*cos(d*x + c) + C)* 
sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(co 
s(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(a*d* 
cos(d*x + c) + a*d)]
 
3.12.57.6 Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \]

input
integrate((A+C*sec(d*x+c)**2)*cos(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(1/2),x)
 
output
Integral((A + C*sec(c + d*x)**2)*sqrt(cos(c + d*x))/sqrt(a*(sec(c + d*x) + 
 1)), x)
 
3.12.57.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 712 vs. \(2 (146) = 292\).

Time = 0.49 (sec) , antiderivative size = 712, normalized size of antiderivative = 4.07 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\text {Too large to display} \]

input
integrate((A+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, al 
gorithm="maxima")
 
output
-1/2*((sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin 
(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x 
+ 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 4*sqrt(2)*sin(1/2*d*x + 1/2*c)) 
*A/sqrt(a) + (sqrt(2)*log(cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d* 
x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c 
)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1 
) - sqrt(2)*log(cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c) 
))^2 + sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2* 
sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - log(2* 
cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3 
*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/ 
3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3 
*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + log(2*cos(1/3 
*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan 
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arcta 
n2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan 
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - log(2*cos(1/3*arctan 
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3 
/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin( 
3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(si...
 
3.12.57.8 Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate((A+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, al 
gorithm="giac")
 
output
integrate((C*sec(d*x + c)^2 + A)*sqrt(cos(d*x + c))/sqrt(a*sec(d*x + c) + 
a), x)
 
3.12.57.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int((cos(c + d*x)^(1/2)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(1/2) 
,x)
 
output
int((cos(c + d*x)^(1/2)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(1/2) 
, x)